Termination of the following Term Rewriting System could be proven:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
s: {1}
length: {1}
and: {1}
isNat: empty set
isNatList: empty set
isNatIList: empty set
nil: empty set


CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
s: {1}
length: {1}
and: {1}
isNat: empty set
isNatList: empty set
isNatIList: empty set
nil: empty set

Using Improved CS-DPs we result in the following initial Q-CSDP problem.

↳ CSR
  ↳ CSDependencyPairsProof
QCSDP
      ↳ QCSDependencyGraphProof
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length, LENGTH} are replacing on all positions.
For all symbols f in {cons, U11, and, U111, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATLIST, ISNAT, ISNATILIST, U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

U111(tt, L) → LENGTH(L)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
LENGTH(cons(N, L)) → AND(isNatList(L), isNat(N))
LENGTH(cons(N, L)) → ISNATLIST(L)

The collapsing dependency pairs are DPc:

U111(tt, L) → L
AND(tt, X) → X


The hidden terms of R are:

zeros
isNatIList(V2)
isNatList(V2)

Every hiding context is built from:none

Hence, the new unhiding pairs DPu are :

U111(tt, L) → U(L)
AND(tt, X) → U(X)
U(zeros) → ZEROS
U(isNatIList(V2)) → ISNATILIST(V2)
U(isNatList(V2)) → ISNATLIST(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 2 SCCs with 4 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
QCSDP
            ↳ QCSDPReductionPairProof
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATLIST, U, ISNATILIST, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatList(V2)) → ISNATLIST(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 2   
POL(AND(x1, x2)) = x2   
POL(ISNAT(x1)) = 0   
POL(ISNATILIST(x1)) = 1   
POL(ISNATLIST(x1)) = 0   
POL(U(x1)) = x1   
POL(U11(x1, x2)) = 1 + 2·x1   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 2   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 2   

the following usable rules

isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeroscons(0, zeros)

could all be oriented weakly.
Furthermore, the pairs

ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)

could be oriented strictly and thus removed.
The pairs

ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
QCSDP
                ↳ QCSDPReductionPairProof
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATLIST, U, ISNATILIST, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 0   
POL(AND(x1, x2)) = x2   
POL(ISNAT(x1)) = 2·x1   
POL(ISNATILIST(x1)) = 2·x1   
POL(ISNATLIST(x1)) = x1   
POL(U(x1)) = x1   
POL(U11(x1, x2)) = 1 + 2·x2   
POL(and(x1, x2)) = x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(isNat(x1)) = 2·x1   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 1 + 2·x1   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   

the following usable rules

isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeroscons(0, zeros)

could all be oriented weakly.
Furthermore, the pairs

ISNAT(length(V1)) → ISNATLIST(V1)

could be oriented strictly and thus removed.
The pairs

ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
QCSDP
                    ↳ QCSDependencyGraphProof
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATLIST, U, ISNATILIST, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 2 SCCs with 1 less node.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
QCSDP
                          ↳ QCSDPSubtermProof
                        ↳ QCSDP
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

ISNAT(s(V1)) → ISNAT(V1)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


ISNAT(s(V1)) → ISNAT(V1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
                          ↳ QCSDPSubtermProof
QCSDP
                              ↳ PIsEmptyProof
                        ↳ QCSDP
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList} are not replacing on any position.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.

↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
QCSDP
                          ↳ QCSDPNarrowingProcessor
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, U, ISNATILIST, ISNATLIST} are not replacing on any position.

The TRS P consists of the following rules:

AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the Context-Sensitive Narrowing Processor
the pair ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
was transformed to the following new pairs:

ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))



↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
                        ↳ QCSDP
                          ↳ QCSDPNarrowingProcessor
QCSDP
                              ↳ QCSDPReductionPairProof
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATILIST, ISNATLIST, U} are not replacing on any position.

The TRS P consists of the following rules:

ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 0   
POL(AND(x1, x2)) = 2·x2   
POL(ISNATILIST(x1)) = 2·x1   
POL(ISNATLIST(x1)) = 0   
POL(U(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(and(x1, x2)) = 2·x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 2   
POL(nil) = 2   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

the following usable rules

isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeroscons(0, zeros)

could all be oriented weakly.
Furthermore, the pairs

ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))

could be oriented strictly and thus removed.
The pairs

ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
                        ↳ QCSDP
                          ↳ QCSDPNarrowingProcessor
                            ↳ QCSDP
                              ↳ QCSDPReductionPairProof
QCSDP
                                  ↳ QCSDPReductionPairProof
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATILIST, ISNATLIST, U} are not replacing on any position.

The TRS P consists of the following rules:

ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 0   
POL(AND(x1, x2)) = 2·x2   
POL(ISNATILIST(x1)) = 2·x1   
POL(ISNATLIST(x1)) = 0   
POL(U(x1)) = 2·x1   
POL(U11(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(and(x1, x2)) = x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 2 + 2·x1   
POL(nil) = 1   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 0   

the following usable rules

isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeroscons(0, zeros)

could all be oriented weakly.
Furthermore, the pairs

ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))

could be oriented strictly and thus removed.
The pairs

ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
                        ↳ QCSDP
                          ↳ QCSDPNarrowingProcessor
                            ↳ QCSDP
                              ↳ QCSDPReductionPairProof
                                ↳ QCSDP
                                  ↳ QCSDPReductionPairProof
QCSDP
                                      ↳ QCSDPNarrowingProcessor
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATILIST, ISNATLIST, U} are not replacing on any position.

The TRS P consists of the following rules:

ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the Context-Sensitive Narrowing Processor
the pair ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
was transformed to the following new pairs:

ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
ISNATLIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatList(y1))
ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))



↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
                        ↳ QCSDP
                          ↳ QCSDPNarrowingProcessor
                            ↳ QCSDP
                              ↳ QCSDPReductionPairProof
                                ↳ QCSDP
                                  ↳ QCSDPReductionPairProof
                                    ↳ QCSDP
                                      ↳ QCSDPNarrowingProcessor
QCSDP
                                          ↳ QCSDPReductionPairProof
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATLIST, U, ISNATILIST} are not replacing on any position.

The TRS P consists of the following rules:

ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
ISNATLIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 0   
POL(AND(x1, x2)) = 2·x2   
POL(ISNATILIST(x1)) = 2·x1   
POL(ISNATLIST(x1)) = x1   
POL(U(x1)) = 2·x1   
POL(U11(x1, x2)) = 2 + x2   
POL(and(x1, x2)) = 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2 + x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   

the following usable rules

isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeroscons(0, zeros)

could all be oriented weakly.
Furthermore, the pairs

ISNATLIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatList(y1))

could be oriented strictly and thus removed.
The pairs

ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ AND
                        ↳ QCSDP
                        ↳ QCSDP
                          ↳ QCSDPNarrowingProcessor
                            ↳ QCSDP
                              ↳ QCSDPReductionPairProof
                                ↳ QCSDP
                                  ↳ QCSDPReductionPairProof
                                    ↳ QCSDP
                                      ↳ QCSDPNarrowingProcessor
                                        ↳ QCSDP
                                          ↳ QCSDPReductionPairProof
QCSDP
          ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length} are replacing on all positions.
For all symbols f in {cons, U11, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList, ISNATLIST, U, ISNATILIST} are not replacing on any position.

The TRS P consists of the following rules:

ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {s, length, LENGTH} are replacing on all positions.
For all symbols f in {cons, U11, and, U111} we have µ(f) = {1}.
The symbols in {isNat, isNatList, isNatIList} are not replacing on any position.

The TRS P consists of the following rules:

LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
U111(tt, L) → LENGTH(L)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)

Q is empty.

We applied the Incomplete Giesl Middeldorp transformation [11] to transform the context-sensitive TRS to a usual TRS.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + 2·x2   
POL(U11Active(x1, x2)) = x1 + 2·x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = x1   
POL(isNatIList(x1)) = 1 + 2·x1   
POL(isNatIListActive(x1)) = 1 + 2·x1   
POL(isNatList(x1)) = 2·x1   
POL(isNatListActive(x1)) = 2·x1   
POL(length(x1)) = 2·x1   
POL(lengthActive(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isNatListActive(nil) → tt
lengthActive(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + 2·x2   
POL(U11Active(x1, x2)) = x1 + 2·x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatIListActive(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(lengthActive(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isNatActive(length(V1)) → isNatListActive(V1)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(U11Active(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatIListActive(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = x1   
POL(length(x1)) = 1 + 2·x1   
POL(lengthActive(x1)) = 1 + 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

zerosActivezeros
mark(isNat(x1)) → isNatActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 1   
POL(U11(x1, x2)) = x1 + x2   
POL(U11Active(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = x1   
POL(isNatIList(x1)) = 1 + 2·x1   
POL(isNatIListActive(x1)) = 2 + 2·x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = x1   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = 1 + x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   
POL(zerosActive) = 1   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

mark(isNatIList(x1)) → isNatIListActive(x1)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + 2·x2   
POL(U11Active(x1, x2)) = x1 + 2·x2   
POL(and(x1, x2)) = 2·x1 + 2·x2   
POL(andActive(x1, x2)) = 2·x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = x1   
POL(isNatIList(x1)) = 2 + x1   
POL(isNatIListActive(x1)) = 1 + x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(lengthActive(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
QTRS
                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isNatActive(x1) → isNat(x1)
isNatListActive(x1) → isNatList(x1)
andActive(tt, X) → mark(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(U11Active(x1, x2)) = 2·x1 + 2·x2   
POL(and(x1, x2)) = x1 + 2·x2   
POL(andActive(x1, x2)) = x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = 1 + 2·x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = 1 + x1   
POL(length(x1)) = 2 + 2·x1   
POL(lengthActive(x1)) = 2 + 2·x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
QTRS
                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(U11Active(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 1 + x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatActive(x1)) = 1 + x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = x1   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = 1 + x1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   
POL(zerosActive) = 1   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
QTRS
                                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

U11Active(tt, L) → s(lengthActive(mark(L)))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(U11Active(x1, x2)) = 2·x1 + 2·x2   
POL(and(x1, x2)) = 2·x1 + 2·x2   
POL(andActive(x1, x2)) = 2·x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(isNatActive(x1)) = 1 + 2·x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = 2 + 2·x1   
POL(length(x1)) = 1 + x1   
POL(lengthActive(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
QTRS
                                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

U11Active(x1, x2) → U11(x1, x2)
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 1   
POL(U11(x1, x2)) = 1 + x1 + x2   
POL(U11Active(x1, x2)) = 2 + x1 + 2·x2   
POL(and(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(andActive(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNatActive(x1)) = x1   
POL(isNatList(x1)) = 2·x1   
POL(isNatListActive(x1)) = 2 + 2·x1   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = 2 + 2·x1   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 2   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
QTRS
                                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
Used ordering:
Polynomial interpretation [25]:

POL(U11(x1, x2)) = 1 + x1 + 2·x2   
POL(U11Active(x1, x2)) = 1 + x1 + x2   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(andActive(x1, x2)) = 1 + x1 + 2·x2   
POL(cons(x1, x2)) = 1 + x1 + 2·x2   
POL(isNatActive(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(isNatListActive(x1)) = 2·x1   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = 2 + 2·x1   
POL(zeros) = 2   
POL(zerosActive) = 1   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
                                        ↳ QTRS
                                          ↳ RRRPoloQTRSProof
QTRS
                                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

lengthActive(x1) → length(x1)
Used ordering:
Polynomial interpretation [25]:

POL(and(x1, x2)) = 2 + x1 + x2   
POL(andActive(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(length(x1)) = 1 + 2·x1   
POL(lengthActive(x1)) = 2 + 2·x1   
POL(mark(x1)) = 2·x1   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
                                        ↳ QTRS
                                          ↳ RRRPoloQTRSProof
                                            ↳ QTRS
                                              ↳ RRRPoloQTRSProof
QTRS
                                                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
Used ordering:
Polynomial interpretation [25]:

POL(and(x1, x2)) = 1 + x1 + x2   
POL(andActive(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(length(x1)) = 2 + 2·x1   
POL(lengthActive(x1)) = 1 + x1   
POL(mark(x1)) = 2 + x1   




↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
                                        ↳ QTRS
                                          ↳ RRRPoloQTRSProof
                                            ↳ QTRS
                                              ↳ RRRPoloQTRSProof
                                                ↳ QTRS
                                                  ↳ RRRPoloQTRSProof
QTRS
                                                      ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.