zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
s: {1}
length: {1}
and: {1}
isNat: empty set
isNatList: empty set
isNatIList: empty set
nil: empty set
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
s: {1}
length: {1}
and: {1}
isNat: empty set
isNatList: empty set
isNatIList: empty set
nil: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ Incomplete Giesl Middeldorp-Transformation
U111(tt, L) → LENGTH(L)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
LENGTH(cons(N, L)) → AND(isNatList(L), isNat(N))
LENGTH(cons(N, L)) → ISNATLIST(L)
U111(tt, L) → L
AND(tt, X) → X
zeros
isNatIList(V2)
isNatList(V2)
U111(tt, L) → U(L)
AND(tt, X) → U(X)
U(zeros) → ZEROS
U(isNatIList(V2)) → ISNATILIST(V2)
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
POL(0) = 2
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = 0
POL(ISNATILIST(x1)) = 1
POL(ISNATLIST(x1)) = 0
POL(U(x1)) = x1
POL(U11(x1, x2)) = 1 + 2·x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 1
POL(isNatList(x1)) = 0
POL(length(x1)) = 2
POL(nil) = 0
POL(s(x1)) = 0
POL(tt) = 0
POL(zeros) = 2
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = 2·x1
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = x1
POL(U(x1)) = x1
POL(U11(x1, x2)) = 1 + 2·x2
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = 2·x1
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNAT(s(V1)) → ISNAT(V1)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNAT(s(V1)) → ISNAT(V1)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
POL(0) = 0
POL(AND(x1, x2)) = 2·x2
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = 0
POL(U(x1)) = x1
POL(U11(x1, x2)) = 0
POL(and(x1, x2)) = 2·x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = 0
POL(length(x1)) = 2
POL(nil) = 2
POL(s(x1)) = 0
POL(tt) = 0
POL(zeros) = 0
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
POL(0) = 0
POL(AND(x1, x2)) = 2·x2
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = 0
POL(U(x1)) = 2·x1
POL(U11(x1, x2)) = 2 + 2·x1 + 2·x2
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = 0
POL(length(x1)) = 2 + 2·x1
POL(nil) = 1
POL(s(x1)) = 1
POL(tt) = 0
POL(zeros) = 0
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
ISNATLIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatList(y1))
ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
ISNATLIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
POL(0) = 0
POL(AND(x1, x2)) = 2·x2
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = x1
POL(U(x1)) = 2·x1
POL(U11(x1, x2)) = 2 + x2
POL(and(x1, x2)) = 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
ISNATLIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatList(y1))
ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
ISNATLIST(cons(s(x0), y1)) → AND(isNat(x0), isNatList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATLIST(cons(0, y1)) → AND(tt, isNatList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
U111(tt, L) → LENGTH(L)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
POL(0) = 0
POL(U11(x1, x2)) = x1 + 2·x2
POL(U11Active(x1, x2)) = x1 + 2·x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = 1 + 2·x1
POL(isNatIListActive(x1)) = 1 + 2·x1
POL(isNatList(x1)) = 2·x1
POL(isNatListActive(x1)) = 2·x1
POL(length(x1)) = 2·x1
POL(lengthActive(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
isNatListActive(nil) → tt
lengthActive(nil) → 0
POL(0) = 0
POL(U11(x1, x2)) = x1 + 2·x2
POL(U11Active(x1, x2)) = x1 + 2·x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatIListActive(x1)) = x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = 2·x1
POL(lengthActive(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
isNatActive(length(V1)) → isNatListActive(V1)
POL(0) = 0
POL(U11(x1, x2)) = 1 + 2·x1 + 2·x2
POL(U11Active(x1, x2)) = 1 + 2·x1 + 2·x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatIListActive(x1)) = x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(lengthActive(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
zerosActive → zeros
mark(isNat(x1)) → isNatActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
POL(0) = 1
POL(U11(x1, x2)) = x1 + x2
POL(U11Active(x1, x2)) = x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = 1 + 2·x1
POL(isNatIListActive(x1)) = 2 + 2·x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 1
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
mark(isNatIList(x1)) → isNatIListActive(x1)
POL(0) = 0
POL(U11(x1, x2)) = x1 + 2·x2
POL(U11Active(x1, x2)) = x1 + 2·x2
POL(and(x1, x2)) = 2·x1 + 2·x2
POL(andActive(x1, x2)) = 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = 2 + x1
POL(isNatIListActive(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = 2·x1
POL(lengthActive(x1)) = 2·x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
isNatActive(x1) → isNat(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
isNatActive(x1) → isNat(x1)
isNatListActive(x1) → isNatList(x1)
andActive(tt, X) → mark(X)
POL(0) = 0
POL(U11(x1, x2)) = 2·x1 + 2·x2
POL(U11Active(x1, x2)) = 2·x1 + 2·x2
POL(and(x1, x2)) = x1 + 2·x2
POL(andActive(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = 1 + 2·x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = 1 + x1
POL(length(x1)) = 2 + 2·x1
POL(lengthActive(x1)) = 2 + 2·x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
Used ordering:
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
POL(0) = 0
POL(U11(x1, x2)) = x1 + x2
POL(U11Active(x1, x2)) = x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = 1 + x1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 1
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
Used ordering:
U11Active(tt, L) → s(lengthActive(mark(L)))
POL(0) = 0
POL(U11(x1, x2)) = 2·x1 + 2·x2
POL(U11Active(x1, x2)) = 2·x1 + 2·x2
POL(and(x1, x2)) = 2·x1 + 2·x2
POL(andActive(x1, x2)) = 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(isNatActive(x1)) = 1 + 2·x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = 2 + 2·x1
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
Used ordering:
U11Active(x1, x2) → U11(x1, x2)
mark(s(x1)) → s(mark(x1))
zerosActive → cons(0, zeros)
isNatActive(0) → tt
isNatActive(s(V1)) → isNatActive(V1)
POL(0) = 1
POL(U11(x1, x2)) = 1 + x1 + x2
POL(U11Active(x1, x2)) = 2 + x1 + 2·x2
POL(and(x1, x2)) = 2 + 2·x1 + 2·x2
POL(andActive(x1, x2)) = 2 + 2·x1 + 2·x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNatActive(x1)) = x1
POL(isNatList(x1)) = 2·x1
POL(isNatListActive(x1)) = 2 + 2·x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = 2 + 2·x1
POL(s(x1)) = 1 + x1
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 2
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
Used ordering:
mark(zeros) → zerosActive
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(U11Active(x1, x2)) = 1 + x1 + x2
POL(and(x1, x2)) = 1 + x1 + x2
POL(andActive(x1, x2)) = 1 + x1 + 2·x2
POL(cons(x1, x2)) = 1 + x1 + 2·x2
POL(isNatActive(x1)) = x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = 2·x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = 2 + 2·x1
POL(zeros) = 2
POL(zerosActive) = 1
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
Used ordering:
lengthActive(x1) → length(x1)
POL(and(x1, x2)) = 2 + x1 + x2
POL(andActive(x1, x2)) = 2 + 2·x1 + 2·x2
POL(length(x1)) = 1 + 2·x1
POL(lengthActive(x1)) = 2 + 2·x1
POL(mark(x1)) = 2·x1
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
Used ordering:
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
POL(and(x1, x2)) = 1 + x1 + x2
POL(andActive(x1, x2)) = 2 + 2·x1 + 2·x2
POL(length(x1)) = 2 + 2·x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = 2 + x1
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof